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ABSTRACT

The study presents a critical evaluation of Artificial Neural Networks (ANNs) in food processing
by successfully predicting the mass transfer in three plant materials. The used of ANNs in osmo-
dehydration was evaluated using two varieties of apple (Malus domestica Borkh) of Golden
Delicious and Cox, banana cultivar Cavendish and potato (Selanum tuberosum L.) variety Estima.
In the ANNs, the radial basis function (RBF) network with a Gaussian function employing the
orthogonal least square (OLS) learning method was used. A single hidden layer of few neurcnes
{(INHL = 20) resulted in the neural network being limited in its ability to model the process efficiently
and the coefficient of determination (R® was 0.76 for water loss. Increased neurones (INHL = 100)
the network was improved significantly (R? = 0.84) for water loss. Subsequent inecrease of the
neurones to 120 (NHL = 120) showed a significant improvement of the network (R? = 0.91) for
sucrose gain. The mass transfer in the three plant materials were successfully predicted by the ANN
models indicating the ability of ANN to model both linear and non-linear models as an advantage
over empirical equations for quality predictions in food processing.

Key words: Artificial neural networks, mass transfer, osmotic dehydration, multilinear regression,
apple, banana

INTRODUCTION

The increased demand for healthy, natural and tasty processed foods by consumers in the last
few decades has seen much research work to improve the quality of food products. In addressing
consumer demands many technologies are now employed into food processing. One of such
technology is Artificial Neural Networks (ANNs), which are computer programmes that are
designed to emulate human information processing capabilities such as knowledge processing,
speech, prediction and control (Basheer and Hajmeer, 2000). Artificial Neural Networks are
recognised as good tools for dynamie modelling and consist of an asseciation of elementary cells or
neurones grouped into distinet layvers and interconnected according to a given architecture
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{Bishop, 1994). According the author, there are different forms of ANN's and all ANN networks
have inputs that are connected by weights to a transfer function, also called the hidden layer(s),
which 1s the most important part of the network since it is where all non-linear calculation 1s
performed. The output from the transfer function are connected by weights which transforms the
values from the transfer function inte the ocutput values which are located in the output layer(s).
ANN’s flexibly to adjust the number of neurcnes in the hidden layer and also incorporate various
mathematical transformations in the hidden layer to operate on the incoming signals 1s their major
strength.

ANN's can accommodate both linear and highly non-linear systems and model very complex
relationships as a dynamic response to external inputs. ANN models can further accommodate
multiple-input and multiple-output systems (Hertz ef al, 1991; Jansson, 1991). Therefore,
variability of multiple parameters in the development of an ANN model is possible.  Another
advantage of the ANN over conventional programs is their ability to learn from the system to be
modelled without any prior knowledge on the relationships of the variables to be moedelled
{Chen et al., 1991).

Further advantage of ANN is the ability to model without any assumptions about the nature
of the underlying mechanisms and their ability to take into account nen-linearities and interactions
between variables (Bishop, 1994; Yu et «l., 2007; Qasem and Shamsuddin, 2010). Most
importantly of ANN 1s the unique capability of learning from exemplar training data sets and
consequently, an ability to adapt to the changing environment (Jansson, 1991; Linko and
Zhu, 1991). ANN is also able to deal with uncertainties and with noisy and approximate data
(Linko and Zhu, 1991). Artificial neural networks (ANN) have been the focus of interest in many
diverse fields of science and technology. They have been used as a modelling tool in several foods
processing applications and have been demonstrated to perform better than conventional tools
which were based on regression, statistical or parametric models. ANN's are rapidly becoming an
interesting, novel method in the estimation, prediction and control of dynamic bioprocesses
{(Lanko and Zhu, 1991, 1992a-c; Linko ef al., 1992). The application of the ANN maodels to food
processing systems is very novel {Trelea et al., 1997). In the field of food process engineering, it is
a good alternative to the conventional empirical modelling based on polynomial and linear
regressions (Baughman and Liu, 1995; Eerikainen ef al., 1993). ANN modelling performances to
the conventional empirical modelling have been recognized and confirmed by many research
reports (Hertz ef al., 1991; Eerikainen ef al., 1993). Neural (1996) provides a wide overview of
potential applications of the neural network as classification, prediction, data association and
optimisation. ANN applications in food and agriculture included fermentation (Latrille et al., 1993),
extrusion (Lanko ef al., 1992), filtration (Dornier ef «fl., 1995), drying (Huang and Mujumdar,
1993), psychrometry (Sreekanth et al., 1998), thermal processing (Sablani et al., 1995), rheology
{Ruan et al., 1995) and sensory science (Park et al., 1995). ANNs had been applied in modelling
for estimation of aflatoxin contamination in peanuts and it performed better (R? = 0.925) than
traditional linear regression techniques (R? = 0.822) (Parmer ef al., 1997). It has been shown that
artificial neural networks (ANNs) have the capability of integrating large numbers of independent
variables (e.g. fruit sample physical state, initial moisture content of the sample, temperature,
concentration of the esmotic selution, time of immersion in osmotic solution) in such a way that the
value of the dependent. variable(s) (e.g. final target moisture content of the sermi-dried product) can
be predicted with a high degree of accuracy (Trelea et al., 1997). This paper evaluated the used of
ANNs in osmo-dehydration of apple, banana and potato.
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Fig. 1. Generalized Artificial Neural Network architecture for radial basis function networks
depicting input, one hidden and one output layer and neurons with feedback link

MATERIALS AND METHODS

Principles of ANN models: Artificial neural networks (ANN) have inputs that are connected by
weights to a transfer function, also called the hidden layer(s). This is the most important part of the
network since it is where all non-linear calculation 1s performed. The cutput from the transfer
function are connected by weights which transforms the valves from the transfer function into the
output valves, which are located in the output layer(s). Each element of the input, hidden and
output layers are generally referred to as neurons.

The multilayer feed forward neural networks are often used in studies (Basheer and Hajmeer,
2000). In these networks, signals are propagated from the input layer through the hidden layer
to the cutput layer. Thus a node receives signals via connections from other nodes, or from the
outside world in the case of input layer. The schematics description of Fig. 1 illustrates n neuron
with various signals of intensity x as input with y output and hidden layer neurons generalized.
The network is connected with w 1 weights between the input and the hidden layer and w 2
between the hidden layer and the output layer with a threshold (bias) of b.

The principle of using ANN in modelling is aim at obtaining the parameter Win Eq: 1.

Y = WX+E (1

The main purpose is to establish a relationship between X and Y the input and output,
respectively, which minimizes E (bias) by generating the coefficients W (weights) in the hidden
layer and outer layer.

The experimental data are repeatedly passed through the network. The repeated submission
of data to the network is called training and learning. During each pass, the weights w 1 and w 2
are adjusted according to the error minimization criterion between the calculated output and the
known target cutputs until an acceptable error differences is cbtained after submitting the data to
the network several times. When satisfactory results are obtained, the weights in the input and
output are stored and used to perform predictions on future data.

The main strength of ANN is the ability to flexibly adjust the number of neurons in the hidden
layer and also incorporate various mathematical transformations in the hidden layer to operate on
the incoming signals.
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Fig. 2: The schematics of a single radial basis Gaussian neuron in hidden layer

Radial Basis Gaussian Function (RBF) Networks: Radial Basis Gaussian Function (RBF)
networks are a special case of multilayer feedforward error-back propagation network with
three layers (Schalkoff, 1997). This type of network generally has one hidden layer and the output
is generally a linear function. Radial basis function networks are powerful in function eptimisation
modelling and they train rapidly compared to a back propagation (BP) network (Bishop, 1995;
Haykin, 1994; Morris and Boddy, 1996; Wilkins et al., 1999). The hidden layer is used to cluster
the inputs of the network. They can be trained by a number of learning algorithms. The network
employs a radial basis function such as the Gaussian function (Haykin, 1994; Yen and Lu, 2003;
Yu et al., 2007; Qasem and Shamsuddin, 2010), which 1s the most popular hidden layer function.
Figure 2 shows the radial basis Gaussian function overview with schematic data flow. The others
are thin-plate-spline, multiquadric and inverse multiquadric function. The mathematical
relationships are simplified below:

(Gaussian function: {{x) = exp (- x*/20%) (2)
Thin-plate-spline function: f{x) = x* . log x )
Multiquadric: f(x) = ( x*+0°)"? (4)
Inverse multiquadric: f{x) = { x*+0?)*? (5)

where, f(x) 1s the function of an input x and o 1s the spread of the function.

Single output value: Figure 2 shows a single output value radial basis Gaussian neuron.
In the hidden and cutput layers, the net input to unit j is of the form:

Yoo = 8 (x-wlj[)b (®)

where, x are the inputs, w1, are the weights associated with each input connection and b is the bias
associated with the nodej G=1,..., n).
This sum is used in a Gaussian function to give an output of the node as follows:
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The hidden neurcn function as a radial basis Gaussian function (RBF) is given as:
f(x) = exp {- (xyw|)70%} (8)
where, 0<f(x)<1; bl =f (0) and 0 = spread (width, scaling) of the function:
Y= Z(x-wl). bl )
Yield = E(Y_, . w2j+b2) (10
Training of the neural network 1s by modification of connection weights (w) given as:
M, = Yo - Yienm (1D
where, x1;, x, =input variables, wl, w, = connection weights of respective input variables,

You = target value, M, =
modification of the connection weights and b1, b2 = hias asscciated with the neurons.

= network input, Y_, = the output of the network processes, Y

out known

Training, learning and testing RBF network: The RBF network employed the orthogonal least
squares (OLS) learning method. The OLS method is one of the most efficient learning methods
reported for RBF neural modelling. During learning the OLS receives a net input vector distance
| | x-w | | between its weight vector w and the input vector x, multiplied by the bias b. The bhias 1s
a direct funection of the spread parameter o which determines the proportion of the input space
where the jth RBF neuron has sufficient non-zero response. Thus the valve of the spread should
be such that it results in neurons responding strongly to overlapping regions of the input space.
Neurons are created one at a time during the training eyecle. At each iteration, the input vector,
which will result in lowering the network error the most, is used to create a RBF neuron. The error
of the network is checked and if lower than the set of error, training is terminated otherwise the
next neuron 1s added. This procedure 1s repeated until the error level set. is met or the set maximum
number of neurons is exhausted. A mathematical summary of OLS is presented below. The desired
response d(n) is represented in a linear regression equation as:

d(n) = I x; (n)a;te(n) (12)

where, n=1,2, ..., N;i1=1,..., m); a are the model parameters, the x,(n) are the regressors and
e(n) is model error. In matrix notation, the above equation becomes:

d=Xa+e (13)

Where:
d=[d(1),d(2, ..., dN)]" (14)
a=[a,a, ...,ayl (15)
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X=X, X o X)” (16)
=[x 1),%Q),. . x M =i=M) (a7
e=[e(l), e(2), ..., e {18)

The regressor vectors x, form a set of the basis vectors and the least-squares solution of the
matrix equation satisfies the condition that the matrix product Xa be the projection of the desired
response vector d onto the space spanned by the basis vectors. The OLS method involves the
transformation of the regressor vector x,, x, ..., xinto a corresponding set of orthogonal basis
vectors denoted by u,, u,, ..., u,, For example, the standard Gram-Schmidt orthogonalization

procedure (Marcus, 1993) may be used to perform the transformation, as shown by:

u = x, (19)
o= (0 Ty, (1=1=k) (20)
u, = %2 ¢, x(1=1and k-1 2L

where, k =2, ..., M.
The OLS learning procedure choose the radial basis function centres t, t,, ..., t; as a subset of
the training data vectors x,, %, ..., % t, where M<N. The centres (neurons) are determined one by

one in a well defined manner following the Gram-Schmidt orthogonalization procedure until a
network of adequate performance is constructed. At each step of the procedure the increment to the
explained variance of the desired output is maximized. This resulted in the OLS learning procedure
generally producing an RBF network whose hidden layer is smaller than that of a RBF network
with randomly selected centres, for a specific level of unexplained variance of the desired response.
Generally the correct choice of the optimum neurons for the RBF networks depends on the spread
0. The problem at hand determmnes the correct choice of the spread. Therefore a systemic approach
to finding the optimum network configuration is important.

The selection of the optimum neurons for the RBF network depends on the spread, o. The

spread 1s however a function of the final bias used in the Gaussian networks.

ANN performance validation: The validation of the neural network configurations performance
is decided by using the absclute error of prediction (AE) and the standard error of prediction (SE).
In addition, the correlation coefficient (R) value of the regression between the predicted values and
the experimental values was also used for comparison. The formulae of the paramters are presented

helow:
AE = X[(X-Y) /1] (22)
SE = {E[(X-Y) ¥n}? (23)

where, X = experimental data, Y = predicted data and n = number of samples.
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Plant materials: Three plant materials were used in this study. They were banana (Musa spp.)
cultivar Cavendish, potato (Selanum tuberosum L.) variety Estima and apple (Malus domestica
Borkh) varieties Golden Delicious and Cox of 150 days after full bloom (DAFB) maturity levels were
obtained from Horticultural Research International, East-Malling, Kent, England. Banana and
potato were purchased from a local supermarket in Chatham, Kent, England and used immediately
after purchase for each experiment. Banana fruits from a single bunch were used for each
experiment ensuring that fruits selected were at stage four of ripeness, more yellow than green

(UFSC, 1964).

Experimental design: Two gravimetric data sets on water loss and sucrose gain were used for
training, testing and validating of the ANNs models. Set (1) data of osmo-dehydration at short
sampling period of 0-50 min with sampling intervals of 5 min and a lenger sampling period of
0-10 h with 1 h sampling intervals conducted at three levels for temperature (32.2, 40 and 55°C)
and one level of osmotic solution of sucrose concentration (70%) for the three plant materials. Set
(2) data is a factorial design at three levels for temperature (32.2, 40 and 55°C) and three levels
of sucrose concentration sclution (40, 50 and 60%) conducted at a sampling period of 0-2 h with
30 min sampling intervals for csmo-dehydration of apple, banana and potato. Experiments were
conducted in triplicate.

Preparing ANN Data: Experimental data sets were divided into three groups. The first
{(Group A) cases were for training. The second (Group B) cases were for testing and the third
{Group C) cases were for validation of the model. Groups were formed by employing a systematic
approach of numbering all the original data points by 1, 2 and 3. To obtain three equal groups of
data, every data row assigned 1 was selected and removed from the original set. These formed the
first (Group A) data set for training. The same procedure was repeated for the remaining two data
sets each forming groups B and C. In this study, gravimetric experimental data set of 1,026 was
used to obtain three group data sets of 33.2% for training, testing and validation of ANNs models.
The EBF network algorithm using Orthogonal Least Squares (OLS) was employved. [t consisted of
a network of 20-100 neurones in the hidden layer (NHL) for the model generation as schematised
in Fig. 1 (where: n = neuron; x =input; ¥y = output; wl = weights between input and hidden layer;
w2 = weight between hidden layer and output; b = bias). The diameter or spread of the function
was 0.5-1.4.

Development of ANN models: The Matlab Neural Net Tool Box version 1.0 (The Matlab Inec,,
Mass., USA) was used for evaluating ANNs modelling.

Radial Basis Function (RBF) networks: Radial basis function network with a Gaussian
function was used in this study (Bishop, 1995; Haykin, 1994; Morris and Boddy, 1996;
Wilkins ef al., 1999; Yen, 2006; Yu ef al., 2007). The simplified mathematical relationships of the
Gaussian function and mass transfer during osmo-dehydration are given as:

fi(x) = exp (x*/20%) {(24)
WL = exp-(T. C. t. 8s. S5t)*/20° {(25)
SG = exp-(T. C. t. Ss. St)*/20° (26)
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where, T =temperature, C = concentration of ocsmotic solution (sucrose), t = immersion time, Ss =
sample size, St = sample type and o = spread of the funection.

RESULTS AND DISCUSSION

Model development and optimisation: In order to achieve the best ANNs, several networks
were trained on a grid of 64 networks of various combination of 0 and added-on number of
neurons. The error of each network was evaluated and the one with the minimum error on the test
data set was selected and finally evaluated on further validation data sets. This is in conformance
with reported studies in literature indicating one hidden layer was sufficient to approximate any
and continues non-linear function, although more complex neural networks are used in special
applications (Linke and Zhu, 1991; Chen et «l., 1991; Hertz et al., 1991; Jansson, 1991;
Haykin, 1994; Baughman and Liu, 1995; Bishop, 1995; Morris and Boddy, 1996; Wilkins ef al.,
1999; Basheer and Hajmeer, 2000; Poligne et al., 2002). Therefore, RBF that can maodel non-linear
function using single hidden layer was used. To achieve this, several networks were trained on a
grid of 64 networks of various combination of 6 and added-on number of neurones. Each network’s
error was evaluated and the one with the minimum error on the test data set was selected. This
selected network was finally evaluated on further validation data sets. Notably, using a single
hidden layer of few neurones (NHL = 20) resulted in the neural network being limited in its ability
te model the process efficiently and the ceefficient of determination (R?) was 0.76 for water loss.
Increasing the neurones (NHL = 100) the network was improved significantly (R* = 0.84) for water
loss. Subsequent inerease of the neurones to 120 (NHL = 120) showed a significant improvement,
of the network (R*= 0.91) for sucrose gain. Figure 3-6 shows ANNs plots of optimisation of training
and testing for water loss and sucrose gain during osmo-dehydration of apple, banana and potato.
Comparing the experimental water loss and the predicted water loss (Fig. 3, 4) for both training
and testing shows inadequate fit compared to sucrose gain (Fig. 5, 8). The near perfect fit of the
sucrose gain is an indication of the ANNs to model the solids gain.
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Performance of the ANN models: The performance of the ANN models for water loss and sclids
gain indicated evenly distribution and satisfactorily represent the experimental data at all stages
of the experiment. Statistical results show values of the correlation coefficient (R) for water loss was
0.9142 and solhid gain was 0.9547, absolute error in the range of 0.1113-0.0089 and standard error
0.1515-0.0125, representing that neural network has good prediction ability for both water loss and
solid gain. Authors in the past had compared the performances of the ANN models with regression
models, which showed some similarity or differences depending on the materials under study, in
the regression coefficients of determination (R% and coefficient of regression (R} (Chen ef al., 1991;
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Linko et al., 1992; Eerikainen et al., 1993; Latrille et «l., 1993; Huang and Mujumdar, 1993;
Haykin, 1994; Baughman and Liu, 1995; Bishop, 1995; Dornier et af., 1995; Sablani ef al., 1995;
Ruan et al., 1995; Park et al., 1995; Trelea et al., 1997, Parmer et «l., 1997; Sreekanth et al.,
1998; Basheer and Hajmeer, 2000; Poligne ef al., 2002; Tortoe ef al., 2008). In such situations it
indicates some degree of similarity and differences in terms of water loss and solid gain prediction
when the correlation coefficient (R) for ANN and the MLR models are compared. ANN ability to
model the solid gain excellently is due to its flexibility to model both linear and nonlinear models
(Park et al., 1995; Parmer et al., 1997; Tortoe et al., 2008; Basheer and Hajmeer, 2000; Schalkoff,
1997; Bishop, 1995; Haykin, 1994; Chen ef al., 1991; Poligne ef al., 2002). Generally the AINN
models showed an improvement on the MLE models. Poligne ef al. (2002) employving ANN showed
good performance valves of 0.985]1 for water loss, 0.9855 for salt gain and 0.8811 for sugar gain.
The authors applied ANN to pork curing at 10 - 70°C in DE21 glucose syrup (0-1.362 kg kg™
water) and liquid smoke flavouring (7.5-42.5 mL kg™ water). Tortoe et al. (2008) predicted
regression coefficient for determination (R% in MLR for water loss of 0.8861 whereas ANN was
(0.8358. However, a major difference was observed for solid gain prediction by the two methods. The
R? for solid gain in MLR models was 0.3054 and for ANN was 0.9115. This indicates a very
significant improvement by ANN models for solid gain compared to the MLR. The lower R? value
of the MLR model for solid gain shows that there i1s insignificant correlation between the
experimental data and the predicted data.

CONCLUSION

The ability of ANN to model both linear and non-linear models is an advantage over empirical
equations for quality predictions in food processing. The mass transfer in plant materials was
successfully predicted by ANN models. However, further ANN modelling needs to be carried out on
other plant and animal materials and for variable operating conditions.
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